Bifunctional role of the Treponema pallidum extracellular matrix binding adhesin Tp0751.
نویسندگان
چکیده
Treponema pallidum, the causative agent of syphilis, is a highly invasive pathogenic spirochete capable of attaching to host cells, invading the tissue barrier, and undergoing rapid widespread dissemination via the circulatory system. The T. pallidum adhesin Tp0751 was previously shown to bind laminin, the most abundant component of the basement membrane, suggesting a role for this adhesin in host tissue colonization and bacterial dissemination. We hypothesized that similar to that of other invasive pathogens, the interaction of T. pallidum with host coagulation proteins, such as fibrinogen, may also be crucial for dissemination via the circulatory system. To test this prediction, we used enzyme-linked immunosorbent assay (ELISA) methodology to demonstrate specific binding of soluble recombinant Tp0751 to human fibrinogen. Click-chemistry-based palmitoylation profiling of heterologously expressed Tp0751 confirmed the presence of a lipid attachment site within this adhesin. Analysis of the Tp0751 primary sequence revealed the presence of a C-terminal putative HEXXH metalloprotease motif, and in vitro degradation assays confirmed that recombinant Tp0751 purified from both insect and Escherichia coli expression systems degrades human fibrinogen and laminin. The proteolytic activity of Tp0751 was abolished by the presence of the metalloprotease inhibitor 1,10-phenanthroline. Further, inductively coupled plasma-mass spectrometry showed that Tp0751 binds zinc and calcium. Collectively, these results indicate that Tp0751 is a zinc-dependent, membrane-associated protease that exhibits metalloprotease-like characteristics. However, site-directed mutagenesis of the HEXXH motif to HQXXH did not abolish the proteolytic activity of Tp0751, indicating that further mutagenesis studies are required to elucidate the critical active site residues associated with this protein. This study represents the first published description of a T. pallidum protease capable of degrading host components and thus provides novel insight into the mechanism of T. pallidum dissemination.
منابع مشابه
Heterologous expression of the Treponema pallidum laminin-binding adhesin Tp0751 in the culturable spirochete Treponema phagedenis.
Treponema pallidum subsp. pallidum, the causative agent of syphilis, is an unculturable, genetically intractable bacterium. Here we report the use of the shuttle vector pKMR4PEMCS for the expression of a previously identified T. pallidum laminin-binding adhesin, Tp0751, in the nonadherent, culturable spirochete Treponema phagedenis. Heterologous expression of Tp0751 in T. phagedenis was confirm...
متن کاملIdentification of a Treponema pallidum laminin-binding protein.
Host extracellular matrix (ECM) components represent ideal microbial adhesion targets that many pathogens use for colonization of tissues and initiation of infection. This study investigated the interaction of the spirochete Treponema pallidum with the ECM component laminin. To identify candidate laminin-binding adhesins, the T. pallidum genome was analyzed to predict open reading frames that e...
متن کاملA defined syphilis vaccine candidate inhibits dissemination of Treponema pallidum subspecies pallidum
Syphilis is a prominent disease in low- and middle-income countries, and a re-emerging public health threat in high-income countries. Syphilis elimination will require development of an effective vaccine that has thus far remained elusive. Here we assess the vaccine potential of Tp0751, a vascular adhesin from the causative agent of syphilis, Treponema pallidum subsp. pallidum. Tp0751-immunized...
متن کاملThe Structure of Treponema pallidum Tp0751 (Pallilysin) Reveals a Non-canonical Lipocalin Fold That Mediates Adhesion to Extracellular Matrix Components and Interactions with Host Cells
Syphilis is a chronic disease caused by the bacterium Treponema pallidum subsp. pallidum. Treponema pallidum disseminates widely throughout the host and extravasates from the vasculature, a process that is at least partially dependent upon the ability of T. pallidum to interact with host extracellular matrix (ECM) components. Defining the molecular basis for the interaction between T. pallidum ...
متن کاملConservation of the Host-Interacting Proteins Tp0750 and Pallilysin among Treponemes and Restriction of Proteolytic Capacity to Treponema pallidum.
The spirochete Treponema pallidum subsp. pallidum is the causative agent of syphilis, a chronic, sexually transmitted infection characterized by multiple symptomatic and asymptomatic stages. Although several other species in the genus are able to cause or contribute to disease, T. pallidum differs in that it is able to rapidly disseminate via the bloodstream to tissue sites distant from the sit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 79 3 شماره
صفحات -
تاریخ انتشار 2011